Nonlinear predictable representation and L1-solutions of backward SDEs and second-order backward SDEs

نویسندگان

چکیده

La théorie des équations différentielles stochastiques rétrogrades étend la propriété de représentation prévisible du mouvement brownien au cadre non linéaire, offrant ainsi un analogue non-markovien aux dérivées partielles paraboliques complètement linéaires. Dans ce papier, nous considérons les EDS rétrogrades, leur version réfléchies et son extension second ordre, dans le contexte d’une donnée terminale d’un générateur L1-intégrables. Notre objectif est d’établir résultat d’existence d’unicité pour Lipschitzien. Nous montrons que l’unicité a lieu classe processus Doob, simultanément sous une appropriée mesures probabilité sur l’espace trajectoires. Notons nouveau, même cas particulier où littérature précédente établit générateurs, soit séparables en (y,z) (Peng (In Backward Stochastic Differential Equations (1997) 141–159 Longman)), strictement sous-linéaires variable gradient z, (Briand, Delyon, Hu, Pardoux and Stoica (Stochastic Process. Appl. 108 (1) (2003) 109–129)), ou alors condition d’intégrabilité LlnL (Hu Tang (Electron. Commun. Probab. 23 (2018) 27)). évitons recourir à telles conditions introduisant l’intégrabilité L1 l’opérateur d’espérance linéaire induit par ci-dessus probabilité.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wellposedness of Second Order Backward SDEs

We provide an existence and uniqueness theory for an extension of backward SDEs to the second order. While standard Backward SDEs are naturally connected to semilinear PDEs, our second order extension is connected to fully nonlinear PDEs, as suggested in [4]. In particular, we provide a fully nonlinear extension of the Feynman-Kac formula. Unlike [4], the alternative formulation of this paper i...

متن کامل

On weak solutions of forward–backward SDEs

In this paper we continue exploring the notion of weak solution of forward–backward stochastic differential equations (FBSDEs) and associated forward–backward martingale problems (FBMPs). The main purpose of this work is to remove the constraints on the martingale integrands in the uniqueness proofs in our previous work (Ma et al. in Ann Probab 36(6):2092–2125, 2008). We consider a general clas...

متن کامل

Weak Solutions of Forward-Backward SDEs and Their Uniqueness

In this paper we propose a new notion of Forward-Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the backward stochastic differential equations. The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of a forward-backward stochastic differential equation (FBSDE...

متن کامل

Backward SDEs with superquadratic growth

In this paper, we discuss the solvability of backward stochastic differential equations (BSDEs) with superquadratic generators. We first prove that given a superquadratic generator, there exists a bounded terminal value, such that the associated BSDE does not admit any bounded solution. On the other hand, we prove that if the superquadratic BSDE admits a bounded solution, then there exist infin...

متن کامل

Weak Solutions for Forward – Backward Sdes — a Martingale Problem Approach

In this paper, we propose a new notion of Forward–Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the forward–backward stochastic differential equations (FBSDEs). The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of an FBSDE. We first prove a general suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'I.H.P

سال: 2022

ISSN: ['0246-0203', '1778-7017']

DOI: https://doi.org/10.1214/21-aihp1177